
milestone_report.md 2025-04-16

1 / 2

Schedule

Dates Objective Status

3/26 -

4/2

Create path-planning problem with maps. Plan out how we will implement which

algorithms; do deeper research on them, our options, opportunities for parallelism,

approach that can be taken, etc.

Done

4/2 -

4/9

Complete a prototype of Dijkstraʼs Algorithm that can be easily modified to try

different approaches of exploiting parallelism / different policies that might yield

differing results.

Done

4/9 -

4/16

Begin working on getting the best speedup possible for Dijkstraʼs, and continue

working on edge contraction.

In

progress

4/16 -

4/19

Finalize edge contraction and begin star contraction, in terms of maximum

parallelization speedup.

4/20 -

4/23

Finalize star contraction, begin contraction hierarchies to assist in speedup for

Dijkstraʼs algorithm. If time allows, begin implementing PRMs.

4/24 -

4/27

Finalize these algorithms (most importantly, contraction hierarchies), and combine

with Dijkstraʼs. Record results.

4/28 -

4/29
Final report and poster-board preparation

Work Completed So Far

So far, weʼve completed a decent amount of work and, for the most part, we remain on track with our

schedule. We finished implementing a sequential version of Dijkstraʼs algorithm, and we also found an

interesting path-planning problem for it to solve by downloading elevation data of the Washington, DC area

from the USGS. Because the data is extremely high-resolution, we wrote a Python script to downscale it to

a resolution of our choosing (essentially controlling the difficulty of the problem), and we also created a

visualizer tool that shows the map and an overlay of the path that was found. Currently, weʼre working on

parallelizing Dijkstraʼs through a delta stepping approach.

We have also begun implementing star-contraction, and implemented edge-contraction (two graph

contraction techniques learned in 15-210), and parallelizing them using OpenMP. While we believe that we

may be able to use these algorithms to assist in running Dijkstraʼs algorithm faster, research on the topic of

graph contraction in path-planning indicates that implementing a different contraction technique -

contraction hierarchies - should yield the best results.

Our overall plan is to first process the graph and simplify it using parallelized contractions, then run it

through a parallelized Dijkstraʼs algorithm to output plans in significantly less time.

Goals and Deliverables

Based on the feedback that we received on our project proposal, we decided to modify the scope of the

project. Weʼre focusing mostly on parallelizing Dijkstraʼs algorithm, and parallelizing techniques (such as

graph contraction) that are used to assist with Dijkstraʼs algorithm, rather than focusing on other path-



milestone_report.md 2025-04-16

2 / 2

planning algorithms that better lend themselves to parallelization that we originally mentioned in our

proposal (PRMs, RRTs, etc.). Our goal remains to see what kind of speedup we can achieve from

parallelizing Dijkstraʼs algorithm, considering also speedups to subroutines that can be used to assist in

Dijkstraʼs algorithm, and what tradeoffs emerge in terms of performance vs. quality of path found. With

extra time, we may explore PRMs, but weʼll be removing RRTs from our project and will only explore PRMs if

we feel that weʼve explored parallelization of Dijkstraʼs algorithm using several techniques to a deep level.

Poster Session Presentation

During our poster session, weʼll do a live demo that shows our planning algorithm using the sequential

implementation and our best parallelized implementation.

Preliminary Results

We donʼt have preliminary results to show because weʼve mostly completed the sequential versions and the

tooling required for our problem. Weʼre currently working through parallelization, including parallelizing the

edge contractions and parallelizing Dijkstraʼs algorithm through delta stepping.

Issues of Concern

In terms of parallelizing Dijkstraʼs algorithm, there are a few different approaches. Weʼve decided to

move forward with a delta-stepping approach, but there could potentially be better options that offer

a better speedup.

We are hoping that implementing contraction hierarchies for improving Dijkstraʼs algorithm will not be

too much more difficult than the graph contraction techniques that we have already done; it seems

that this graph contraction technique is significantly more involved.

PDF

Milestone Report PDF

file:///Users/aidan/Downloads/15418-finalproj/milestone_report.pdf

